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Abstract: In research and program evaluation, it is sometimes useful to organize 

data into 2x2 contingency tables which include frequencies of those which display 

the presence or absence of one condition along with the presence or absence of a 

second condition. The present manuscript presents researchers and evaluators with 

alternative methods for analyzing such data. The reader is introduced to 

alternatives to the Pearson Chi Square, specifically the Odds Ratio and the Relative 

Risk Ratio.   
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       In research and/or program evaluation, it is frequently the case that the 

type of information of interest is not easily (or meaningfully) translated into 

convenient measures of average and variability. Instead, we are left with 

percents or frequencies. The purpose of this manuscript is to discuss how 

researchers and program evaluators can make use of the 2x2 contingency 

table as a helpful way to conceptualize, organize, and report data. This is a 

widely used strategy in medical epidemiology and has been advocated for 

influencing public policy in the social sciences (Scott, Mason, & Chapman, 

1999). In this manuscript, I will draw upon two examples, one in the context 

of evaluation and the other in research, and offer two useful indices of 

association, the odds ratio and the relative risk ratio.  

A contingency table is constructed of two intersecting categorical 

variables. For categories to be useful, they must be exhaustive and mutually 

exclusive (Everitt, 1977). To be exhaustive, the classification scheme must 

account for all cases. To be mutually exclusive, an individual or case must 

fit into only one category. In the special condition of the 2x2 contingency 

table, each category must also be dichotomous; that is, each category has 

two possibilities. A 2x2 contingency table can thus be thought of as the 

intersection of the presence or absence of condition 1 with the presence or 

absence of condition 2. The four resulting combinations can be identified by 

the letters a to d as follows (table  1). 

Table 1 

Pattern of Categories in a 2x2 Contingency Table 

                              Condition 2   

Condition 1     Present  Absent 

Present     a  b 

Absent    c      d  

Use of a 2x2 Contingency Table in Evaluating an Intervention 
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Getting busy professionals to engage in a new behavior is often difficult. 

In the case of physicians in training, they are beleaguered with multiple 

demands for new procedures. Diabetes is a complex metabolic disease that, 

when poorly controlled, has a high risk of multiple, negative complications. 

The arrival of a new, relatively simple blood test to assess quality of 

patients’ diabetes control was thus an important step forward in their 

treatment. Unfortunately, physicians were not routinely ordering the test. 

The problem facing the team was how to alter their behavior.  

A simple intervention was conceived. When a patient with diabetes was 

scheduled for an appointment a computerized reminder was randomly 

generated for some but not other patients. The computerized reminder was 

posted on the front of the patient’s chart and it told the physician not to 

forget to give the blood test.  The results of the intervention were as follows 

(table  2). 

Table 2 

Physician Administered Blood Tests When Reminded or Not Reminded 

Administered the Blood Test  

Received Reminder      Yes   No      All 

  Yes         33     3 36

              No    10     14  24 

  All    43 17  60     

Chi Square (
2
) 

A simple test of the relationship between the two categorical variables is 

often assessed through the application of the Chi-Square (
2
) statistic 

(sometimes called the Pearson Chi-Square). The null hypothesis tested with 


2
 using a 2x2 contingency table is described as a test of independence. If 

the null hypothesis is valid, the observed frequencies should not differ by 

more than chance from the expected frequencies. Expected cell frequencies 

are the values that would result if the two independent dichotomous 

proportions were combined. As the observed frequencies diverge from the 

expected frequencies, the value of 
2
 increases. Computationally, for each 

cell of the contingency table, the investigator compares the Observed 

Frequency (O) and the Expected Frequency (E). These comparisons are 

combined using the formula: 

 




E

EO
2

2

  
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That is, in each cell the difference between the Observed and Expected 

Frequencies is squared, then that product is divided by the cell's Expected 

Frequency. The results of these computations for each cell are then 

summed.  

To hand calculate the value of 
2
 one must find the E values for each 

cell; to do that one must first compute the "marginal values" and the total 

number of cases (N). The marginal values are simply the number of cases in 

each row and the number of cases in each column. The expected likelihood 

of a case falling into row 1 (pr1) or row 2 (pr2) is simply the marginal 

number of cases for the row, divided be the total number of cases. For the 

data in Table 2, 36 of 60 patients’ charts (60 percent) were so noted. 

Likewise the respective column probabilities (pc1 and pc2) are the marginal 

column totals divided by the overall total. If variable 1 and variable 2 are 

independent, that is randomly associated, the expected frequency for each 

cellij is the product of the corresponding row (pri) and column (pcj) 

probabilities multiplied by the total number of cases or, more simply, the 

product of the marginal totals for the respective row (Ri) and column (Cj) 

divided by the total number of cases: 

  ij ri cj

i j

E p p N
R C
N

   

The expected frequency for cell a (cella) of the intervention data is thus: 

8.25
60

43*3611

11


N
CR

E  

Repeating this process for each cell results in a 2x2 table of expected 

(Eij) value. To compute, the value of   
2
 requires that, for each cell, the 

difference for each observed cell frequency and its expected frequency be 

squared and the result divided by the expected frequency. The result of each 

of those computations is then summed. 

         
73.17

8.6

8.614

2.17

2.1710

2.10

2.103

8.25

8.2533
2

2222
2
















E

EO


     Fortunately for all concerned, however, most standard statistical 

packages, such as SPSS and others provide, in their procedures, chi square 

computations that create contingency tables. In the case of SPSS, one relies 

on the CROSSTABS routine. At what point can one conclude that the 
2
 is 

sufficiently large to reject the null hypothesis of independence? The answer 

lies in a table of critical values for the 
2
 distribution that is associated with 
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differing "degrees of freedom." In the generic case, degrees of freedom for a 


2
 test of independence are defined as the number of rows less one (r-1) 

multiplied by the number of columns less one (c-1). Since, in the 2x2 

contingency table, r-1=1 and c-1=1, the critical values lie in the 
2
 

distribution with 1 degree of freedom. To select the appropriate critical 

value the investigator must elect a level of risk of Type 1 error (: the risk 

of mistakenly rejecting a true null hypothesis). Commonly used critical 

values for 
2

df=1,1- are presented in table (3). 

Table 3 

Critical values of 2
 with 1 degree of freedom at varied levels of 1-:  

P or (1-)   .95  .975  .990  .999 

   .05  .025  .01  .001  

Critical 
2
1,1-  3.841  5.028  6.635  10.828 

 

 Thus, given a 
2

df=1 = 17.73, the chances of finding a  
2

df=1 that large is 

quite remote, less than 1 in 1000. The null hypothesis of independence is 

rejected. Therefore, it may be concluded that the intervention was an 

effective mechanism for altering the physicians’ behavior. 

 In some instances, when sample sizes are small (less than 5), some 

statistics textbooks, especially older texts, suggest that the computed 
2 

be 

adjusted using the Yates Continuity Correction.  The formula is adjusted by 

subtracting the value 0.5 from the absolute difference between the observed 

and expected value and squaring the result prior to dividing by the expected 

value. 

 2

2

05
  

 O E

E

.
 

 Were we to apply the Yates correction to the runaway data, the 

corrected 
2

df=1 would be 102.062, still significant at the .001 level. Some
 

indicate that Yates correction should be applied generally (Everitt, 1977; 

Fliess, 1986; Rosner, 1986). However, other reviews (e.g., Brown, 1985; 

Conover, 1999; Overall, 1980)
 
suggest that not only is the "correction" 

unnecessary, it may affect our risk of Type I error.
 
I agree with Brown 

(1985)
 

who concludes that if the results are so borderline that the 

conclusions would change by applying the Yates correction, "the research 

should be considered suggestive but not conclusive" (p. 414).  

 The existence of a statistically significant Pearson 
2

df=1 for a 2x2 

contingency table justifies rejecting the null hypothesis of independence. 
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The 
2

df=1 does not, however, provide the investigator of a sense of the 

magnitude or the direction of the effect. One can look over the data and 

conclude from the example that those who received the reminder were more 

likely to request the blood test than those who did not receive the reminder. 

It would, however, be more instructive if we could have an index of the 

magnitude and the direction of the relationship. One such index that 

provides such assessments is the Odds Ratio (Everitt, 1977; Rosner, 1986; 

Conover, 1980; McNutt & Woolson, 1988; Morris & Gardner, 1988).  The 

Odds Ratio is described below. 

 Suppose we were to ask the question: What is the relative likelihood that 

more adolescents with a history of running away are more likely to 

contemplate dropping out of school? An odds ratio or a risk ratio gives us a 

direct assessment of that question.  

The Odds Ratio     

 The Odds Ratio (OR) index permits us to compare the odds in one group 

of displaying the targeted outcome to not displaying the outcome to the 

comparable odds in the second group. In this instance among those 

physicians who received the reminder, the ratio of the number who 

requested the test (a) to the number not requesting the test (b) or a:b is 

compared to the comparable ratio of those who did not get the reminder 

(c:d). The OR is thus: 

 
 

d
c

b
a

OR   

And, with some minor algebra  

 
 

OR
a

b

c
d

a d

c b
 

*

*
 

 If the likelihood of the outcome was the same for both samples 

runaways and non-runaways, the expected value of OR is 1.00. To the 

degree that the odds in sample 1 exceed the odds in sample 2, OR will be 

greater than 1.00. Alternatively, if the odds of the outcome in sample 1 are 

less than in sample 2, OR will be less than 1.00. Viewing the physician 

intervention data: 

4.15
30

462

3*10

14*33

*

*


bc

da
OR  
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 That is, physicians who received the reminder were 15.4 times as likely 

to request the test as those who did not receive the reminder. Practically, 

this communicated much more directly to hospital administrators than 

reporting the chi-square. 

 

Relative Risk 

 The second alternative is a Relative Risk (RR) index. The use of RR 

allows us to compare the likelihood of our targeted outcome occurring in 

one sample relative to the likelihood of the outcome occurring in the other. 

The proportion of those who display the targeted outcome in sample 1: 

a/(a+b) is compared to the proportion of those who display the targeted 

outcome in sample 2: c/(c+d). RR is thus: 

 

 
RR

a
a b

c
c d






 

 If the likelihood of the outcome was the same in the two samples, the 

expected value of RR is 1.00. To the degree that the likelihood of the 

outcome in sample 1 exceeds sample 2, RR will be greater than 1.00. 

Alternatively, if the likelihood of the outcome in sample 1 is less than in 

sample 2, RR will be less than 1.00. Drawing on the example of the 

physicians educational intervention: 

 

 

 

 
2.2

1410
10

333
33













dc
c

ba
a

RR  

 That is, the likelihood of administering the blood test among those 

physicians who received the intervention was 2.2 times as likely as those 

who did not receive the intervention.  

 

Use of a 2x2 contingency table in a research context 

 

 In an earlier study (Ingersoll & Orr, 1989) various risk factors among 

middle school aged adolescents were examined. The sample consisted of 

1418 students in grades 7, 8, and 9. For purposes of this discussion attention 

will be focused on students’ responses to a question regarding one’s 

intention to drop out of school. The item stated “I have thought about 

dropping out of school.” To which a student could indicate “Never,” “Once 

in a while,” “Frequently,” or “Nearly always.” Responses were coded into a 

dichotomous variable (1 Low: Never or Once in a while, and 2 High: 

Frequently and Nearly always.) Response to dropout risk (low, high) will be 
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assessed as it relates to two dichotomous variables, gender and a history of 

having ever run away from home. The resulting data for the two conditions 

can be summarized in 2x2 contingency tables (4&5) as follows: 

 

Table 4 

Dropout Risk for Males and Females 

 Dropout Risk    

 Gender  High  Low   

 Male               43  669    

 Female   45  624        

Table 5 

Dropout Risk for Adolescents Who Have and Have Not Run Away From 

Home 

 Dropout Risk  

 Runaway          High  Low 

 Ever            53      217  

 Never            33  1092  

 

Odds Ratio     

 In the research context, the Odds Ratio (OR) index permits us to 

compare the odds in one group of displaying the targeted outcome to not 

displaying the outcome to the comparable odds in the second group. In this 

instance among those who have a history of running away, the ratio of 

intent to drop out of school (a) to not intending to drop out of school (b) is 

compared to the same ratio (a:b) of those without a history of running away 

(c:d). The OR is again: 

 
 

OR
a

b

c
d

a d

c b
 

*

*
 

 If the likelihood of the outcome was the same for both samples 

runaways and non-runaways, the expected value of OR is 1.00. To the 

degree that the odds in sample 1 exceed the odds in sample 2, OR will be 

greater than 1.00. Alternatively, if the odds of the outcome in sample 1 are 

less than in sample 2, OR will be less than 1.00. In the instance of the 

dropout risk relative to gender (see Table 4), the 
2

df=1 was .27, not 

statistically significant. The OR for that comparison was 1.1, not different 

from 1.00. In contrast, consider the runaway and dropout risk data (see 

Table 5): 
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082.8
217*33

1092*53

*

*


bc

da
OR  

 That is, adolescents who have a history of running away are 8.1 times as 

likely to contemplate dropping out of school. The 
2

df=1 was 104.93, 

suggesting statistical significance.  

 

Hypothesis-testing using the Odds Ratio 

 

 The 
2

df=1 offers a direct test of the statistical significance of the 

relationship, but most writers encourage the establishment of confidence 

intervals around the index. The null hypothesis being tested is that OR = 

1.00. The observed OR (ORobs), is an estimate of the real OR, based on the 

available samples. A confidence interval provides a band within which the 

investigator can say, with a predetermined level of confidence, that the real 

OR is found. If the confidence interval includes the null hypothesis, that is, 

it overlaps 1.00, the null hypothesis is retained. The calculation of the 

confidence interval for OR requires the transformation of the data using 

natural logarithms.
1
 The standard error of the logeORobs (McNutt & 

Woolson, 1988, Morris & Gardner, 1988) is: 

 
dcba

ORSE obse

1111
log   

The lower and upper bounds of the confidence interval ( logeORL, logeORU) 

are defined as:  

   ORSEZORORORCI ObseObseUeLe log*loglog;log
2

11  


 

This can also be express as  

   1logloglog ORORORP UeTrueeLe  

where Z1-/2 is the two-tailed critical value of Z, given a predetermined 

level of . If  is established at .05, the two-tailed critical value is 1.96. 

Establishing a 95 percent confidence interval around the ORobs for the 

runaway and dropout risk data: 

                                                 
1
 The author has generated an Excel program that computes all these values and may be accessed at 

http://www.fedu.uaeu.ac.ae/main-pages/resources.html. To use the program one simply enters the four cell 
frequencies. The program produces all values referred to in this manuscript. 

 

http://www.fedu.uaeu.ac.ae/main-pages/resources.html
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  234.
1092

1

33

1

217

1

53

11111
log 

dcba
ORSE obse  

Computing the natural log of the observed OR: 

090.2)082.8(loglog  eobse OR  

The 95 percent confidence interval is thereby established by 

   

}548.2;631.1{234.*96.1090.2

log*loglog;log

1

2
11









CI

ORSEZORORORCI ObseObseUeLe





 

Or 

 
  95.548.2log631.1

logloglog 1


 

ORP

ORORORP

Truee

UeTrueeLe 
 

However, we prefer to convert these values back to the normal metric 

upon which they are based. To do this we take the antilog of each of the 

limits. Since the base of the natural logarithm system is e  (2.7182818), 

e 
1.631

 = 5.11  e 
2.548

 = 12.78 

Thus 

 
  95.78.12log11.5

1


 

ORP

ORORORP

Truee

UTrueL 
 

 Since the lower limit of the confidence interval is greater than 1.0, we 

can reject our null hypothesis of no relationship.  

 

Relative Risk 

 In the research context, the use of RR allows us to compare the 

likelihood of our targeted outcome occurring in one sample relative to the 

likelihood of the outcome occurring in the other. The proportion of those 

who display the targeted outcome in sample 1: a/(a+b) is compared to the 

proportion of those who display the targeted outcome in sample 2: c/(c+d). 

RR is again: 

 

 
RR

a
a b

c
c d





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 If the likelihood of the outcome was the same in the two samples, the 

expected value of RR is 1.00. To the degree that the likelihood of the 

outcome in sample 1 exceeds sample 2, RR will be greater than 1.00. 

Alternatively, if the likelihood of the outcome in sample 1 is less than in 

sample 2, RR will be less than 1.00. Drawing on the runaway example: 

 

 

 

 
692.6

109233
33

21753
53













dc
c

ba
a

RR  

 That is, among those adolescents who had a history of running away are 

2.9 times as likely to plan to drop out of school as those who did not have a 

history of running away. It may be seen that in describing the relationships 

assessed through both in the use of 
2
df=1 and the odds ratio I have avoided 

using causal language. Much as I might like to conclude: Dropout risk is a 

function of having a history of running away", the analysis does not justify 

that level of inference. The same limits for the use of causal language for 

associational, categorical data apply as do with correlation analyses 

(Kraemer, 2006). In the research context, however, we also want to assess 

whether the relationship is statistically significant.  

 

 

 

 

Hypothesis testing using the Risk Ratio 

 

 Like the OR, the null hypothesis being tested is that RR = 1.00. The 

obtained or observed RR (RRobs), is an estimate of the real RR,  based on 

the available samples. The standard error of the logeRRobs (McNutt & 

Woolson, 1988; Morris & Gardner, 1988) is:  

 
   SE RRe obs a a b c c d

log  


 


1 1 1 1
 

The lower and upper bounds (logeRRL, logeRRU) of the confidence interval 

for 1- are defined as: 

   RRSEZRRRRRRCI ObseObseUeLe log*loglog;log
2

11  
  

This can also be express as  

   1logloglog RRRRRRP UeTrueeLe  
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where Z1-/2 is the normal, two-tailed critical value of Z, given a 

predetermined level of . If  is established at .05, the two-tailed critical 

value is 1.96. Establishing a 95 percent confidence interval around the RRobs 

for the cognitive maturity data: 

 
   SE RRe obs a a b c c d

log  


 


1 1 1 1
 

 
   

211.
1125

1

33

1

270

1

53

1
log RRSE obse  

Computing the natural log of the observed RR: 

901.1692.6loglog 









 eObse RR  

The 95 percent confidence interval is thereby established by: 

   

 315.2;487.1.211.*96.1901.1

log*loglog;log

1

2
11









CI

RRSEZRRRRRRCI ObseObseUeLe




 

or 

 
  95.315.2log487.1

logloglog 1


 

RRP

RRRRRRP

Truee

UeTrueeLe 
 

However, we prefer to convert these values back to the normal metric upon 

which they are based.  

e 
1.487

 = 4.424  e 
2.315

 = 10.122 

Thus 

 
  95.122.10424.4

1


 

RRP

RRRRRRP

True

UTrueL 
 

 Since the lower limit of the confidence interval is greater than 1.0, we 

can reject our null hypothesis of no relationship.
2
 

                                                 
2 It is sometimes desirable to frame the question in the opposite form. That is, those with the 

presence of a condition are less likely to display an outcome. In that case, the process in the 
same but the resulting ratio is less than 1.0 and the limits of the confidence interval are also 
less than 1.0. 
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Cautions 

 

 Both the RR and OR indices convey information about the likelihood 

that one group displays a targeted outcome relative to a second group. The 

difference in interpretation of the two indices is reflected in their formulas. 

 In the case of the Relative Risk ratio, RR is the ratio of the proportion of 

all members of group 1 who display the targeted outcome [a/(a+b)] relative 

to the proportion of all members of group 2 who display the targeted 

outcome [c/(c+d)]. In the case of the Odds Ratio, OR is the ratio of the odds 

of those in Group 1 who display the targeted outcome to those who do not 

[a:b] relative to the odds of those in Group 2 who display the targeted 

outcome to those who do not [c:d]. The RR is a ratio of relative proportions; 

the OR is a ratio of relative odds. 

 Some cautions should be noted about the use of the 2x2 contingency 

table as a model of choice. In part, one caution has already been put forth. 

That is, the typical 2x2 implies independence of sampling. An investigator 

may wish to exert control over the sampling process by using matched pairs 

of subjects. Alternatively, an investigator may employ a pre-test post-test 

design. The resulting 2x2 table would look exactly like the 2x2 tables we 

have addressed. However, applying the assessments described in this article 

would be inappropriate; the McNemar test
 
(Everitt, 1977; Fliess, 1986) 

would offer a more appropriate assessment of the results. 

 In a research model, there is an assumption that the samples which 

constituted the groups were independent and randomly selected from a 

larger parent population. To the extent that the samples are not random 

samples from a larger parent population, the ability of the researcher to 

generalize to the larger population is jeopardized. 

 There is some risk, in larger studies, of collapsing too much data into a 

single 2x2 table. First, if a continuous variable is compacted into a 

dichotomous variable, the choice of dividing points may have an effect on 

the character of the relationship. By and large, if stable, usable continuous 

variable data are available, they are usually preferable to dichotomous data. 

Similarly, a 2x2 table may be compiled over a third (or more) variable 

which covaries with the outcome of concern. For example, long-term risk of 

dropping out of school may be contaminated with the age of the group 

under study. It may be helpful under such circumstances to create multiple 

2x2 tables across strata. That is, a 2x2 table for those in the age range 10 to 

11 years old, a 2x2 table for those in the age range 12-13 to 50 years old, a 

2x2 table for those in the age range 13-14 years old, etc. Still, what one 

wants from such a breakdown is a composite assessment. To accomplish 

that end, one needs to apply a somewhat more complex analysis, sometimes 

called the Mantel-Haentszel technique which produces an odds ratio across 

strata (Mantel & Haentzel, 1959; Davis, 1991). 
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 Finally, it is often the case that an investigator has multiple outcomes 

toward which this model might be applied. It should be warned that the 

"experiment-wise" error rate across the several 
2
 or odds ratio analyses 

may no longer be the same as originally intended. The reader who wishes a 

more in-depth and advanced treatment of methods of analyzing 2x2 

contingency tables is referred to Kraemer (2006). 

 Those cautions notwithstanding, the 2x2 contingency table offers a 

valuable addition to one’s analytic arsenal.  
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Note 

 
1 If you were to read the output of a CROSSTABS analysis from SPSS, the 

uncorrected 2 is labeled the "Pearson" and the Yates corrected 2 is 
labeled "Continuity Correction." SPSS presents the exact probability of the 
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
2, thus, one compares the exact probability to the pre-established level of 

statistical significance (a). If the exact probability is less than a, then the 
null hypothesis is rejected. 

 


